

ЛТСМ 4-ГО БЛОКА ЧАЭС: ТОПОГРАФИЯ, ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА, СЦЕНАРИЙ ОБРАЗОВАНИЯ

Э.М. Пазухин

1. ВВЕДЕНИЕ

К началу 1987 г. было окончательно установлено, что ядерное топливо находится в объекте "Укрытие" в виде трех модификаций. Во-первых, это АЗФ: выброшенные взрывом каналы, сборки, отдельные твэлы и их осколки и т.д. Во-вторых, это топливо в виде пыли с характерными размерами частиц от долей микрона до сотен микрон (так называемые топливные "горячие" частицы). Третья модификация топлива в виде ЛТСМ была обнаружена осенью 1986 г. в подреакторном помещении 217/2 в виде гигантской застывшей черной капли, которая получила название "слоновья нога".

В дальнейшем ЛТСМ были обнаружены во многих подреакторных помещениях. Как показали анализы, в их составе содержалась значительная часть урана первоначальной загрузки реактора и наработанных за время кампании радионуклидов. Поэтому ЛТСМ стали предметом внимательного изучения.

Исследования, проведенные в 1987 - 1992 гг., позволили выявить места расположения основных массивов ЛТСМ, описать их физико-химические свойства, обнаружить процессы эрозии ЛТСМ и, наконец, создать достаточно непротиворечивый сценарий их образования.

Основные результаты этих исследований были использованы при составлении ТОЯБ [1].

За прошедшие годы о ЛТСМ накопилась новая информация и стало ясно, что часть старых данных должна быть пересмотрена или откорректирована.

Это и является основной целью предлагаемой статьи.

2. ПОТОКИ ЛТСМ

До некоторой степени условно можно выделить три потока ЛТСМ: большой вертикальный, малый вертикальный и большой горизонтальный.

2.1. Большой вертикальный поток. Начало большого вертикального потока - юго-западная часть помещения 305/2, вверх южного четвертого паросбросного клапана. Далее - вниз, в помещение 210/7 парораспределительного коридора (ПРК) по четвертому паросбросному клапану, который соединяет помещение 305/2 и помещение 210/7 ПРК через потолочное перекрытие.

Расплавленные ТСМ большого вертикального потока, перевалив через торцы паросбросных труб, проникли по наружным телескопическим трубам из помещения 210/7 ПРК в помещение 012/15 (ББ-2), образовав так называемую "кучу второго этажа".

Еще ниже, на первом этаже ББ, помещение 012/7, наблюдается еще одно скопление ЛТСМ ("куча первого этажа" ББ) - шоколадно-коричневая керамика, поступившая по паросбросным трубам малого диаметра.

- 2.2. *Малый вертикальный поток*. Начало потока юго-восточная часть помещения 305/2, третий и четвертый южные паросбросные клапаны . Далее помещение 210/6 ПРК, где застывшая угольно-черная керамика вытекает из патрубков третьего и четвертого клапанов.
- 2.3. *Большой горизонтальный поток*. Начало потока пролом в стене между помещениями 305/2 и 304/3. Далее само помещение 304/3. Керамика угольно-

черная, матовая, волнистая, в трещинах, с очень крупными газообразными пустотами. Далее на юг (через открытую дверь помещения 304/3) лавовый поток попал в коридор 301/5 и разделился по двум направлениям: на запад и на восток. В западном направлении поток прошел немного и затек в помещение 303/3. В восточном направлении лавовый поток проделал значительно больший путь: на восток - до коридора 301/6, затем по нему на юг и через кабельные проходки вниз - в помещение 217/2 ("слоновья нога"). Если измерить путь лавы внутри помещения 305/2, все повороты и вертикальные перепады, то общий путь потока составит около 50 м.

3. КЛАССИФИКАЦИЯ ЛТСМ

ЛТСМ по внешним признакам могут быть разделены на следующие типы [2-4].

- 3.1. Коричневая стеклообразная масса "коричневая керамика". Хрупкая, пронизана множеством пор различного диаметра. Внешняя поверхность чаще всего блестящая, иногда матовая. Встречается в виде слоя, расположенного над расплавленным и застывшим металлом (как "флюс" в металлургических процессах). Содержит большое количество мельчайших металлических шариков правильной формы. Обнаруживается главным образом в большом вертикальном потоке с основной локализацией в ПРК.
- 3.2. Черная стеклообразная масса черная керамика. Цвет угольно-черный. Поверхность в некоторых случаях матовая с очень большим количеством газовых пор и пустот большого размера (1-2 дм²). Чаще всего такого вида керамика наблюдается ближе к центру образования ЛТСМ (юго-восточная часть помещения 305/2). Характерным в этом отношении является коридор 304/3, где черная керамика напоминает кокс и из-за множества газовых пор кажется легкой и теплой. В других случаях черная керамика имеет блестящую поверхность и напоминает антрацит. Чаще всего эта разновидность встречается на достаточно больших расстояниях от центра развития процессов ("слоновья нога" и "сталактиты" в этом же помещении).
- 3.3. Шлак или шлакообразные гранулированные ЛТСМ. Встречается в виде больших куч на полу первого и второго этажей ББ. Представляют собой застывшие массы, покрытые стеклообразной коркой. Под коркой кучи состоят из стеклообразных гранул неправильной формы с вариацией цвета от серо-розового до темно-коричневого. Очевидно, что эта модификация ЛТСМ образовалась при достаточно длительном контакте расплава коричневой керамики с водой, заполнявшей в штатном положении первый и второй этажи ББ до отметки 1,2 м. Выделявшийся водяной пар способствовал грануляции расплава внутри куч, а контакт с холодной водой "закалке" этих куч с поверхности.
- 3.4. Рассыпчатые куски, встречающиеся только в ББ, так называемая "пемза". Образования серо-коричневого цвета, предположительно возникшие при самом первом контакте высокотемпературной лавы с водой и вспененные мгновенно выделившимся паром. Эти образования представляют собой хрупкий неоднородный материал. Большое количество "пемзы" расположено в районе проходок, через которые происходил сброс воды из ББ. Объяснить это можно тем, что пемзообразные куски легче воды и к моменту слива плавали на ее поверхности. По мере снижения водяного уровня куски "пемзы" подплывали к месту расположения сливных отверстий, цепляясь за конструкции и иногда оставаясь на них достаточно высоко над полом в самых неожиданных местах.
- 3.5. Переплавленный и застывший металл. Строго говоря, переплавленный и застывший металл к ТСМ не относится, поскольку, как выяснилось со временем,

он не содержит собственно частиц топлива, но лишь отдельные осколки деления (например, рутений-106). В то же время все вышеперечисленные типы ЛТСМ содержат в себе металлические шарики очень правильной формы и очень разного диаметра - от нескольких микрон до миллиметров.

Основное место локализации - ПРК, особенно помещение 210/5 ("блин" застывшего металла).

4. ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА ЛТСМ

При детальном исследовании ЛТСМ выяснилось, что это - гетерогенные твердые растворы, представляющие собой стекловидную матрицу с различного типа включениями. Поэтому ниже приводятся данные о физико-химических свойствах ЛТСМ, полученные при их изучении как на макро-, так и на микроуровнях. В первом случае анализировалась валовая навеска соответствующего типа ЛТСМ, во втором материал подвергался детальному микроскопическому или микрозондовому анализу.

- 4.1. Физико-химические свойства ЛТСМ (макроуровень). В настоящем разделе приведены данные по плотности ЛТСМ и процентному содержанию в них топлива, выгоранию, обеднению по отдельным осколочным элементам (цериевые отношения), а также по среднему химическому составу [5-7].
- 4.1.1. Плотность ЛТСМ. Как уже указывалось, ЛТСМ чрезвычайно разнородный материал, плотность которого в значительной степени определяют газовые пустоты. При классическом методе определения плотности по этим пустотам внутрь ЛТСМ попадает вода, что приводит к ошибкам в измерениях. Поэтому для определения истинной плотности ЛТСМ были разработаны специальный прибор и гидрофобное покрытие, позволившее избежать нежелательных эффектов. В зависимости от пористости плотность коричневой керамики из помещения 210/7 ПРК колеблется от 1,6 до 2,8 г/см³. Черная керамика из помещения 210/6 ПРК имеет плотность $(2,0\pm 0,2)$ г/см³. Приблизительно такое же значение плотности показал образец из "кучи" ББ-2: $(2,1\pm0,2)$ г/см³. Плотность "пемзы" из ББ составляет (0,14-0,18)г/см³. Значительно сложнее обстоит дело с плотностью матовой черной керамики из помещения 304/3 (большой горизонтальный поток). Дело в том, что этот материал очень неоднороден по пористости: наименее пористый слой находится у пола и имеет плотность (1,8-2,4) г/см³. Центральный слой имеет большую пористость и меньшую плотность (0,9-1,8) г/см³. Наконец верхний - наиболее пористый слой имеет плотность (0,7-0,9) г/см³. Очевидно, что деление на три слоя является условным и с увеличением размера газовых пустот (иногда они достигают 1-2 дм³) вариации значения плотности будут еще больше.

В отдельных образцах ЛТСМ наблюдались и более высокие значения объемной плотности. Так, в образцах коричневой керамики из помещения 210/7 эта величина достигла 3.15 г/см³, а в черной (из помещения 210/6) - 2,9 г/см³.

- 4.1.2. Содержание топлива в ЛТСМ. Обработка результатов большого числа анализов показала следующее: угольно-черная керамика содержит $(5\pm1)\%$ топлива, шоколадно-коричневая $(10\pm2)\%$.
- 4.1.3. Выгорание. Как показала обработка результатов анализа более чем 350 проб, черная и коричневая керамика имеют практически одинаковое выгорание, а именно: коричневая керамика $(12,6\pm0,4)$, черная $(12,5\pm0,5)$ МВт-сут/кг урана.
- 4.1.4. Радионуклидный состав. Очевидно, что ЛТСМ "варились" при очень высоких температурах выше 1500 °C. При таких температурах из топлива должны

активно выходить в атмосферу легколетучие продукты деления, в том числе и цезий. Кроме того, в специфических условиях аварии на ЧАЭС можно было ожидать, что рутений либо окислится до легколетучих оксидов, либо перейдет в расплавленный металл при контакте последнего с топливом (высокотемпературная экстракция).

Все эти предположения подтвердились при радиохимическом анализе ЛТСМ, результаты которого приведены в табл.1.

Таблица 1.	Цериевые отношения для проб черной и коричневой керамики
	А _і /А _{144Се} . Пересчет на 26.04.1986 г.

Изотоп	Черная керамика	Коричневая керамика	Расчетное значение	Расчет/экспери мент
¹³⁴ Cs	1.31·10 ⁻²	1.27·10 ⁻²	3.02·10 ⁻²	2.3-2.4
¹³⁷ Cs	2.39·10 ⁻²	2.16·10 ⁻²	5.32·10 ⁻²	2.2-2.5
¹⁰⁶ Ru	1.44·10 ⁻²	9.78·10 ⁻³	3.53·10 ⁻¹	24.5-36.1
¹²⁵ Sb	2.14·10 ⁻³	2.04·10 ⁻³	9.49·10 ⁻³	4.4-4.6
¹⁵⁴ Eu	1.34·10 ⁻³	1.39·10 ⁻³	3.42·10 ⁻³	2.6-2.5
¹⁵⁵ Eu	1.77·10 ⁻³	1.62·10 ⁻³	2.86·10 ⁻³	1.6-1.8
⁹⁰ Sr	4.18·10 ⁻²	3.94·10 ⁻²	5.00·10 ⁻²	1.2-1.3
²³⁸ Pu	3.31.10-4	3.36-10 ⁻⁴	3.23·10 ⁻⁴	1
²³⁹⁺²⁴⁰ Pu	8.04.10-4	8.26.10-4	6.10·10 ⁻⁴	0.8-0.74
²⁴¹ Am	1.06-10-4	1.03.10-4	4.23·10 ⁻⁵	0.4
²⁴² Cm	8.60·10 ⁻³	1.13·10 ⁻²	1.10·10 ⁻²	1.3-1.0
²⁴⁴ Cm	9.70·10 ⁻⁵	8.68·10 ⁻⁵	1.05·10 ⁻⁴	1.1-1.2

Из данных, представленных в табл.1, можно сделать следующие выводы:

- 1. Обеднение по цезию во всех пробах составляет 2,2 2,5 раза по сравнению с его расчетным количеством и не зависит от типа керамики имассового числа изотопа цезия. Другими словами, цезия в ЛТСМ осталось около 40 %.
- 2. Обеднение по рутению во всех пробах составляет около 25 раз и не зависит от типа керамики, т.е. рутения в ЛТСМ осталось около 4 % по сравнению с его расчетным количеством.
- 3. Цериевые отношения по плутонию-238 и по сумме $^{239+240}$ Pu с учетом ошибки определения соответствуют расчетным.
- 4. Достаточно хорошая сходимость наблюдается между расчетными и экспериментальными значениями цериевых отношений для изотопов кюрия-242,244 и стронция-90.
- 5. Для америция-241 экспериментально определяемая величина цериевого отношения по сравнению с расчетной больше в 2,5 раза. Это явно свидетельствует об ошибке в расчетах [8], поскольку лишнему америцию взяться просто неоткуда. В дальнейшем с учетом полученных данных результаты расчетов в работе [8] были скорректированы (в уточненной версии 1991 г.).
- 6. Для изотопов европия наблюдается расхождение между расчетными и экспериментальными величинами приблизительно в два раза в сторону уменьшения.

Расхождение значений цериевого отношения для европия можно было объяснить разными причинами. Одна из них - потеря европия в результате высокотемпературного вылета при образовании ЛТСМ.

Для проверки этого предположения были проведены эксперименты по определению относительной утечки продуктов деления при ступенчатом высокотемпературном отжиге топливных "горячих" частиц и образца топлива, отобранного в помещении 305/2.

Результаты показали, что уменьшение цериевого отношения для европия примерно в два раза (как это следует из табл.1) действительно происходит из-за его высокотемпературного вылета при температуре 1600 - 1700 °C. Это значение температур не может быть существенно больше, так как в противном случае,как показали те же опыты, начинает лететь америций, затем - плутоний и кюрий. Таков вылет должен был бы привести к уменьшению цериевых отношений этих элементов, чего не наблюдается (см.табл.1).

Таким образом, из данных, представленных в табл.1, следует важный вывод о том, что процесс образования ЛТСМ протекал при температуре ≤1600 - 1700 °C.

4.1.5. Средний химический состав. Средний химический состав различного типа ЛТСМ представлен в табл.2.

К табл.2 необходимы следующие комментарии:

- 1. ЛТСМ радиоактивный материал с чрезвычайно высокими значениями МЭД до 5-10 Р/ч на 1 г навески. Поэтому для анализа был применен единственно возможный в данных условиях метод эмиссионный спектральный анализ. Его точность 15-20 %. Для лучшей ориентации читателя в полученных результатах в некоторых случаях представлены их минимальные и максимальные значения.
- 2. Из всего, что было сказано выше, ясно, что шоколадно-коричневая керамика, шлак из куч ББ-2 и ББ-1 и "пемза" из ББ генетически один и тот же материал, который образовался в большом вертикальном потоке и который должен иметь один и тот же состав. В то же время шлак и "пемза" это результат взаимодействия шоколадно-коричневой керамики с водой, что могло привести к изменению химического состава этого вида ЛТСМ. Поэтому в табл.2 приводятся результаты анализов для каждого "подтипа" большого вертикального потока и усредненные величины (если такое усреднение корректно).

Из табл.2 видно, что "пемза" из ББ по сравнению со шлаком и коричневой керамикой обогащена железом и по его содержанию приближается к угольно-черной керамике. В то же время и шлак и "пемза" значительно обеднены натрием по сравнению с "материнским" веществом - шоколадной керамикой.

3. Для двух элементов (меди и свинца) в некоторых случаях усреднение результатов из-за значительных разбросов вообще невозможно. Поэтому в соответствующих графах приводится лишь минимальные и максимальные значения.

ЛТСМ	Al	Mn	Fe
Угольно-черная	4.8±1,3	(3.2±1.6)·10 ⁻¹	1.4±1.2
керамика	(3.2÷8.1)	(0÷0.8)	(0,3÷6.4)
Шоколадно- коричневая керамика	3.5±0.7	(5.2±2.1)·10 ⁻¹	(8.4±2) ·10 ⁻¹
Шлак из куч 66	3.4±1.4	(3.8±2.6)·10 ⁻¹	(8.2±1.9)·10 ⁻¹
"Пемза" из ББ	2.8±0.4	(5.0±1.1)·10 ⁻¹	1.2±0.25
Усредненная шоколадно- коричневая	3.3±1.0	(4.6±2.0)·10 ⁻¹	(8.3±2.0)·10 ⁻¹

Таблица 2. Среднее содержание химических элементов в ЛТСМ, мас%

Продолжение табл. 2

					JOIL	кение табл. 2
ЛТСМ	Pb			Cr		Mg
Угольно-черная керамика	(6.5÷110)·10 ⁻³	(1.8±1)·10 ⁻¹ (0.4÷0.45)		2.4±0.8 (0.9÷4.6)	
Шоколадно- коричневая керамика	(12÷240)·10 ⁻³		(2.0±0.5)·10 ^{·1}		4.0±0.9	
Шлак из куч ББ	(1.1±0.1)	· 10 ⁻²	(1.8:	±1.1)·10 ⁻¹		6.2±2.2
"Пемза" из ББ	(1.2±0.2)	·10 ⁻²	(1.8:	±0.1)·10 ⁻¹		4.6±0.4
Усредненная шоколадно- коричневая керамика	-		(2.2	±1.0)·10 ⁻¹		5.0±1.7
ЛТСМ	Ni			В		Ti
Угольно-черная керамика	(1.4±0.6) ·10 (0.04÷0.24)) ⁻¹	(4.1±2) (0.02÷0		٠,	1±0.3) ·10 ⁻¹ 06÷0.18)
Шоколадно- коричневая керамика	(1.8±0.6) ·10) ⁻¹	(7.2±1.9		'	1±0.2) ·10 ⁻¹
Шлак из куч ББ	(2.6±1.2) ·10) ⁻¹	(5.2±2.9	9) ·10 ⁻²	(1.4	1±0.2) ·10 ⁻¹
"Пемза" из ББ	(3.0±0.3) ·10) ⁻¹	(7.3±1.5	5) ·10 ⁻²	(1.9	9±0.2) ·10 ⁻¹
Усредненная шоколадно- коричневая керамика	(2.7±0.1) ·10) ⁻¹	(6.8±1.9) ·10 ⁻²		(1.5±0.4) ·10 ⁻¹	
ЛТСМ	Cu		Si	Ca		Zr
Угольно- черная керамика	.5±1.8) ·10 ⁻¹		±4.8 ÷36)	5,5±2,0 (3.4÷13)		3.2±1.2 (1.6÷6.0)
Шоколадно- коричневая керамика	.8÷18) ·10 ⁻³	30.9	±3.6	4 .7±0.8		4 .8±1.1
Шлак из куч (1 ББ	.5±0.5) ·10 ⁻³	32.3	±2.8	4.0±1.1		4.5±1.4
"Пемза" из ББ (1	.8÷16) ·10 ⁻³	36.6	±0.5	4.8±0.6		3.3± 0.5
Усредненная шоколадно- коричневая керамика	-	32.7	±3.3	4.5±1.0		4.3±1.2
DTCAA	No.	-		Po		
ЛТСМ Угольно-церная	Na 4 2 4 1	7	/1 0:	Ba 10 ⁻¹	 -	U 4.7-1.1
Угольно-черная керамика	4.2±1.7 (1.5÷10)		(1.2±0.3) ·10 ⁻¹		4.7±1.1	
Шоколадно- коричневая керамика	4.0±0.4		(1.8±0.4) ·10 ⁻¹			8.4±0.2
Шлак из куч ББ 1.5±0.5		.5	(1.5±0.3) 10 ⁻¹			8.3±0.2
"Пемза" из ББ	1.4±0.	.2	(1.5±0.4) ·10 ⁻¹			8.3±1
Усредненная шоколадно- коричневая керамика	-		(1.6±	:0.4) ·10 ⁻¹		8.3±0.5

4.2. Физико-химические свойства ЛТСМ (микроуровень) [5-7]. Рентгеноспектральный микроанализ ЛТСМ и растровая электронная микроскопия проводились на микроанализаторах MS-46 (Франция) и CS (Англия).

Проведенные исследования показали, что на микроуровне ЛТСМ представляют собой гетерогенный твердый раствор, "растворителем" которого является стеклообразная силикатная матрица с большим количеством разнообразных включений, среди которых установлены оксиды урана, уран-цирконий-кислородная фаза $U_x Z_{ry} O_z$, так называемый чернобылит и металлические глобулы. Рассмотрим эти компоненты более детально.

4.2.1. Стекловидная силикатная матрица. Оптические наблюдения показали, что сама матрица (без включений) в тонких срезах прозрачна и в шоколадно-коричневой керамике имеет желтоватый или дымчатый оттенок, в угольно-коричневой керамике - характерный бутылочно-зеленый цвет. Таким образом, ясно, что коричневый цвет шоколадной керамики обусловлен не окраской матрицы, а, как было установлено, многочисленными дисперсными включениями буро-коричневых оксидов урана, вероятнее всего, UO2.

Угольно-черный цвет может быть обусловлен либо дисперсными включениями черного U_3O_8 , либо большой примесью железа, растворенного в самой стекловидной матрице. Химический состав стеклообразных матриц различных типов ЛТСМ приведен в табл.3 (еще раз следует подчеркнуть, что эти данные относятся не к валовому составу ЛТСМ, а только к твердому "растворителю" - силикатной матрице).

Таблица 3.	Результаты	рентгеноспектральн	ого ми	икроанализа	силикатной	матрицы
		различных типов	ЛТСМ	1, мас%		

Тип ЛТСМ	K ₂ 0	CaO	MgO	Al ₂ O ₃	ZrO ₂	U	FeO
Матрица шоколадно коричневой керами ки из ПРК (210/7)	1.5 (1.24)*	6.8 (4.5)	5.8 (3.5)	5.2 (2.8)	3.2 (2.4)	2.4	Не обнаружен
Матрица угольно- черной керамики из ПРК (210/6)	1.7 (1.4)	7.2 (5.1)	4.9 (3.0)	5.3 (2.8)	2.8 (2.1)	2.1	8.6 (6.2)
Матрица "слоновьей ноги"	1.7 (1.4)	7.2 (5.1)	1.9 (1.2)	5.1 (2.7)	4.5 (3.3)	4.0	Не обнаружен

^{*} В скобках указано процентное содержание в пересчете только на катион.

Следует отметить, что в пределах различных участков одной пробы явных признаков изменчивости состава выявить не удалось.

В табл. 3 обращают на себя внимание следующие факты:

- 1. В изученных образцах при переходе от коричневой керамики к черной наблюдается снижение концентрации магния, что может быть связано либо с преимущественным расплавлением серпентинитовой засыпки в большом вертикальном потоке, либо с большим разбавлением в малом вертикальном и большом горизонтальном потоках.
- 2. Парадоксальным, на первый взгляд, кажется то, что в матрице "слоновьей ноги" урана почти в два раза больше, чем в матрице коричневой и угольно-чер-

ной керамики ПРК. Ведь при валовом анализе соотношение как раз обратное. Единственным пока удовлетворительным объяснением в данном случае является предположение о возможном растворении частиц оксидов урана в силикатном расплаве по мере его продвижения (большой горизонтальный поток).

В заключение этого раздела следует отметить, что химический состав матрицы ЛТСМ на микроуровне требует дальнейших исследований. Так, открытым остается вопрос о химической неоднородности ЛТСМ по их глубине. По имеющимся данным, какой-либо дифференциации в составе шоколадно-коричневой керамики из ПРК не наблюдается. Примеси в матрице этого типа ЛТСМ распределены равномерно по глубине потока. Отсутствуют и признаки химической неоднородности стекловидной матрицы и гравитационной дифференциации включений в пробах ЛТСМ "слоновьей ноги". Возможно, это объясняется бурным перемешиванием расплава при высокой температуре в процессе движения. В то же время отрицать возможность обнаружения ликвационных эффектов в глубинных участках ЛТСМ в настоящее время преждевременно.

4.2.2. Оксиды урана в ЛТСМ. На микроуровне характеризуются исключительным разнообразием. По химическому составу они делятся на две группы: стехиометрический UO₂ и оксиды урана с изоморфной примесью циркония.

Стехиометрический диоксид урана без изоморфной примеси циркония наблюдается в единичных случаях в виде каплевидных пористых структур. Основное место локализации - малый вертикальный поток. Эти структуры могли образоваться либо при переплавлении топлива, либо представляют собой захваченные микрофрагменты неповрежденного топлива, пористость которого обусловлена газовыделением в процессе деления.

Оксиды урана с изоморфной примесью циркония, не образующего собственную фазу, чрезвычайно разнообразны.

Многообразие форм выделений оксидов урана как с изоморфной примесью циркония, так и без нее позволяет предположить, что их образование происходило на различных стадиях формирования чернобыльских лав и дает возможность оценить максимальную и среднюю температуру в процессе образования ЛТСМ.

Очевидно, что округлые и каплевидные включения оксидов урана с изоморфной примесью циркония являются результатом переплавления части ядерного топлива. Ясно также, что такое переплавление произошло до образования уранциркониевой эвтектики, носило точечно-локальный характер и протекало очень короткое время, вероятно, в первые секунды "большого взрыва".

Откуда следует этот вывод?

Дело в том, что плавление ядерного топлива происходит при значительно более высоких температурах (2750 °C), чем диссоциация циркона ZrSiO₄ (1660 °C). Поэтому если бы этот процесс носил массовый характер и происходил длительное время, мы не могли бы наблюдать кристаллов чернобылита, а включения оксидов урана не имели бы округлой и каплевидной формы.

При какой температуре могли образоваться такие расплавленные включения? Как показал микрозондовый анализ, в состав оксидов урана округлой и каплевидной формы изоморфно входит 2 - 4 мас % циркония. Из диаграммы состояния бинарной системы Zr_2 - UO_2 [9] следует, что такому составу оксидов соответствует температура плавления 2500 - 2600 °C, т.е. ниже, чем температура плавления твэльного диоксида урана.

Таким образом, наиболее вероятным значением для максимальной температуры при аварии на 4-м блоке ЧАЭС является 2250 - 2600 °C.

В силикатной матрице ЛТСМ наблюдается мельчайшие (микронные) крис-

таллические оксиды урана с изоморфной примесью циркония, которые возникли в результате раскристаллизации переплавленного топлива в процессе остывания потоков ЛТСМ.

Особый интерес представляют дендритовидные кристаллы оксидов урана. Их образование может быть связано либо с резким охлаждением ЛТСМ на заключительной стадии процесса, либо с твердофазным распадом стекла и сбросом избыточного урана и циркония из состава силикатной матрицы.

Примеры рентгеноспектрального анализа оксидов урана с изоморфной примесью циркония приведены в табл.4.

4.2.3. Уран-цирконий-кислородная фаза $U_xZr_yO_z$. Переплавленные оксиды урана с изоморфной примесью циркония, как показывают микрозондовые исследования, находятся внутри силикатной матрицы в тесном контакте с фазой $U_xZ_{ry}O_z$. Эта фаза в виде многочисленных сферических выпадений и их агрегатов зеленовато-желтого цвета особенно характерна для большого вертикального потока (ПРК). Вероятно, она является продуктом застывания уран-циркониевой эвтектики. Химический состав этой фазы по различным типам выделений значительно варьирует. Но наиболее гомогенные, в основном сферические выделения, довольно хорошо описываются формулой UZr_zO_{16} ($UO_2\cdot7ZrO_2$) (табл.5).

Таблица 4. Результаты рентгеноспектрального микроанализа оксидов урана с изоморфной примесью циркония, мас%

Тип ЛТСМ	Zr	U	Характеристика фаз
Угольно-черная керамика, малый вертикальный поток	2.0	80.7	Фазы с треугольным сечением, звездчатые выделения, фазы с ромбическим сечением, червеобразные выделения, изометрические выделения
Шоколадно- коричневая керамика, большой вертикальный поток	3.2	78.0	Изометрические выделения, звездчатые выделения, округлые выделения

Таблица 5. Результаты рентгеноспектрального микроанализа сферических выделений фазы UxZryOz, мас%

Содержание	Содержание циркония		ие урана
эксперимент	расчет	эксперимент	расчет
56,2	56,4	20,3	21,0

Дифрактометрические исследования агрегатов этой фазы, выделенных при растворении ЛТСМ в плавиковой кислоте, показали, что она рентгеноаморфна. Наблюдалась лишь примесь моноклинного оксида циркония и в незначительных количествах - тетрагонального ZrO₂.

4.2.4. Чернобылит. Представляет собой урансодержащий силикат циркония явно техногенного происхождения. Он типичен для всех видов ЛТСМ. Если оксиды урана и фаза U_xZr_yO_z не связаны напрямую с формированием расплавов ТСМ, кристаллизация чернобылита обусловлена исключительно реакцией силикатного расплава с продуктами уран-циркониевой эвтектики. Он образует как индивидуальные дипирамидальные кристаллы размером от 5 до 500 мкм, так и их микродрузы. По химическому составу и габитусу кристаллов чернобылит близок

к природному ортосиликату циркония - циркону (ZrSiO₄), широко распространенному минералу магматических пород.

Однако существенное отличие наблюдается в содержании урана, изоморфно входящего в кристаллическую решетку, которое в исследованных образцах ЛТСМ варьирует от 6 до 12 мас %, тогда как в природных цирконах не превышает сотых долей процента. Результаты рентгеноспектрального анализа чернобылита представлены в табл.6.

Таблица 6. Рентгеноспектральный анализ чернобылита, мас %

Si	Zr	U
14,5	42,1	6,1 - 12,9
(15,3)*	(49,8)	(0,01 - 0,09)

^{*}В скобках указано содержание в чистом ZrSiO4

Распределение урана в кристаллах чернобылита неравномерное и контролируется зонами роста. Характерно обогащение ураном краевых частей кристалла.

Химический состав укладывается в интервал (Zr 0.96-0.90 U 0.05-0.10) SiO₄.

Кристаллизация чернобылита происходила при значительно более высокой температуре, чем температура плавления металла крышки основания реактора (~1500 °C). Верхний температурный предел образования данного минерала ограничен температурой диссоциации циркона - 1676 ± 7 °C. В присутствии Al_2O_3 эта температура может снижаться до 1600 °C.

Таким образом, температурный интервал 1660 - 1670 °C наиболее достоверен для кристаллизации чернобылита. Это позволило образующимся кристаллам, захватив капли стального расплава, дать им возможность превратиться в глобулы, когда кристалл уже сформировался, а металл в замкнутой полости еще расплавлен.

Косвенно можно оценить минимальное время кристаллизации этого минерала. Известны работы по синтезу циркона с добавками редких земель методом "раствора в расплаве". При оптимальном режиме синтеза кристаллы размером 3 мм получали за три недели. Чернобылит достигает максимального размера до 0,5 мм. Это обстоятельство дает основание предположить, что температура ≥1660 °C сохранялась в расплавах ЛТСМ не менее 4 - 5 сут.

Рассмотрение примесей в кристаллах чернобылита дает возможность оценить наиболее вероятную величину средней температуры процесса образования ЛТСМ в целом.

Наиболее характерными включениями для большинства кристаллов чернобылита являются оксиды урана с изоморфной примесью циркония (2,5 мас%). Расшифровка дифрактограммы валовой пробы этого минерала позволила идентифицировать фазу U₄O₉, присутствие которой может быть объяснено в том числе и механическим захватом части оксидов урана (прежде всего их наиболее крупных выделений) в процессе кристаллизации чернобыльского техногенного циркона.

Однако, как показали детальные исследования, основное количество дисперсных включений в чернобылите является продуктом сброса избыточного урана (в виде оксидов) при формировании высокоуранового кристаллического циркона по реакции

$$(Zr,U)O_x + SiO_2 \rightarrow (Zr,U)SiO_4 + U_4O_9.$$

Следует подчеркнуть, что образование чернобылита, сопровождаемое сбро-

сом избыточного урана, происходит исключительно по границе фазы (Zr,U) O_x , не затрагивая химически инертного моноклинного оксида циркония.

Можно с большой долей вероятности предположить, что уникальный черно-быльский минерал образовался из тетрагонального ZrO_2 (с изоморфной примесью урана), возникшего на границе силикатного расплава и фазы (Zr,U)О $_{\times}$ при температуре 1600 - 1660 °C, которая является наиболее вероятной средней температурой процесса образования чернобыльских лав:

$$Zr$$
-U-O + $SiO_2 \rightarrow (Zr,U)O_x + SiO_2 \rightarrow$ эвтектика расплав аморфный расплав ($Zr,U)O_2 + SiO_2 \rightarrow (Zr,U)SiO_4 + (Zr,U)O_x + U_4O_9$. тетрагональный расплав чернобылит аморфный

Указанный температурный интервал хорошо согласуется с тем значением, которое было получено при изучении высокотемпературного вылета европия (1600 - 1700 °C, см. п. 4.1.4.).

5. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА ТОПЛИВА В "ЛАВАХ" ПОДРЕАКТОРНЫХ ПОМЕЩЕНИЙ ОБЪЕКТА "УКРЫТИЕ"

5.1. Теплометрический метод. Исследования полей температур и тепловых потоков в условиях "Укрытия" сыграли важную роль.

В конце 1989 г. появились оценки количества топлива в ПРК, а в начале 1990 г. - в помещении 305/2 [12-15]. Было установлено, что с верхней поверхности ТСМ в помещении 305/2 воздушными массами отводится мощность Q = 35 кВт, а с нижней поверхности ТСМ (потолок ПРК) - Q = 25 кВт. Таким образом, суммарное тепловыделение составило 60 кВт, что соответствует массе топлива в помещении 305/2 (75 ± 25) т.

5.2. Визуальный метод. Для оценки количества топлива в ряде других помещений использовался комплексный метод, который можно условно назвать визуальным. Он основан на результатах измерения МЭД при бурении и на визуальных наблюдениях - как прямых, так и с помощью фото- и телеаппаратуры. Этот метод дает достаточно точные результаты лишь тогда, когда ЛТСМ не залиты свежим бетоном, т.е. "визуально открыты". При подготовке ТОЯБ [1] были использованы наиболее пессимистические, с точки зрения безопасности, оценки количества ЛТСМ, полученные этим методом:

Помещение	Масса топлива, т.
ББ-1	(1,5±0,5)
ББ-2	(11±3)
304/3	(14±3)
301/5	(3±1)
301/ 6	(3±1).
301/ 3	(0,2±0,1).
"Слоновья нога"	$(2\pm0,6)$
Три клапана в ПРК	(1,8±0,6)

Окончательные значения количества топлива, вошедшие в ТОЯБ, с учетом данных, полученных РИ [16], представлены в табл.7.

Таблица 7. Количество топлива в помещениях объекта "Укрытие"

Помещение	Отметка	Масса топлива, т.
ББ-1	0,00	1,5±0,5
55-2	3,00	11,0±3
ПРК	6,00	23,0±8
305/2	9,00	75,0±25
Коридоры и помещения, залитые большим горизонтальным потоком (304/3, 303/3, 301/5, 301/6)	9,00	20,0±5
Прочие скопления ТСМ	0,00 -9,00	4,0±1
Сумма		135±30

В самое последнее время появилась работа [17], в которой количество топлива в подреакторных помещениях оценивается значительно ниже, чем это принято в ТОЯБ.

Возникла необходимость еще раз оценить количество топлива в подреакторных помещениях с использованием по возможности объективных и не зависящих друг от друга факторов. В качестве таких "реперов" были выбраны радиоцезий и магний.

5.3. Оценка количества топлива в ЛТСМ по балансу ¹³⁷Сs. Во время активной стадии аварии расплавленные ТСМ были основным источником выброса летучих радионуклидов, в частности радионуклидов цезия. Это делает возможным оценить интегральную массу топлива в составе лав по соотношению цезия, выброшенного из разрушенного блока, и цезия, оставшегося в составе ЛТСМ.

Согласно последним данным, полный выброс 137 Cs при аварии на ЧАЭC составил по активности около 2 МКи (28 % от накопленного за время кампании реактора количества в 7 МКи) [18, 19].

Как уже указывалось, данные анализов свидетельствуют о том, что в ЛТСМ осталось не более 40 % цезия, т.е. вылетело около 60 % его количества, первоначально содержащегося в лавах. Это количество и составило активность в 2 МКи. Тогда начальная активность 137 Cs в топливе, которое вошло в состав лавы, была равна (2:0,6)=3,3 МКи, а количество этого топлива составило (3.3:7)=0,47 от первоначальной загрузки, т.е. около 90 т.

Приведенная оценка достаточно груба, но может только занижать количество топлива в подреакторных помещениях, поскольку часть вылетевшего цезия осталась в верхних помещениях блока, сконденсировавшись на относительно холодных частях разрушенных модулей. Если это так, то из подреакторных помещений вылетело больше 3,3 МКи и топлива в лаве более 90 т.

5.4. Оценка количества топлива в ЛТСМ по содержанию в них магния. Из табл.2 следует, что в ЛТСМ содержится вполне заметное количество магния. Ни бетон, ни конструкционная сталь в своем составе магния не содержат. Поэтому теоретически магний мог попасть в подреакторные помещения и ассимилироваться ЛТСМ двумя путями. Во-первых, из серпентинитовой засыпки при расплавлении плиты основания реактора (схема "OP"). Во-вторых, из доломита CaMg(CO₃)₂, который сбрасывался с вертолетов в качестве одного из компонентов засыпки горящего реактора.

Весь опыт работы сотрудников РИ и ИАЭ по разведке помещений 4-го блока свидетельствуют о том, что большая часть материалов засыпки в шахту реактора не попала.

Таким образом, магний мог попасть в состав ЛТСМ практически только одним путем - из серпентинитовой засыпки при расплавлении плиты схемы "ОР".

Вычислим среднюю концентрацию магния в ЛТСМ. Исходя из визуального обследования потоков ТСМ и результатов бурения можно утверждать, что 2/3 ЛТСМ - это угольно-черная керамика (концентрация магния - 2,4 %), а 1/3 - шоколадно-коричневая (концентрация магния - 4,3 %). Отсюда средняя концентрация магния в ЛТСМ составляет ($2/3 \cdot 2,4 + 4,3 \cdot 1/3$) = 3,0 %.

Серпентинит $Mg_6(Si_4O_{10})(OH)_8$ содержит 26 % магния, в лаве его 3 %. Следовательно, разбавление серпентиновой засыпки в лаве составляет (26 : 3) 8,67 раза.

Разведочный осмотр помещения 305/2 показал, что отсутствующий, т.е. расплавленный, сектор плиты основания реактора составляет 105 - 110 °. Общее же количество серпентинита в схеме "OP" составляет 489 т. Таким образом, масса ТСМ в подреакторных помещениях должна составлять $(107^{\circ}/360^{\circ})\cdot489\cdot8,67 = 1257$ т, а количество топлива в них (при среднем его содержании 7%, см. табл.2) равно $1257\cdot0,07 = 88$ т. Приводимая величина является нижней границей оценки, поскольку не учтен серпентинит термокомпенсаторного зазора и возможное присутствие в лаве $A3\Phi$.

Эта оценка хорошо совпадает с массой топлива в лавах, которая была вычислена по тепловым измерениям и по балансу радиоцезия (конечно, сюда не входит топливо, находящееся на схеме "OP" или в шахте реактора).

Перечисленные выше факты показывают, с какой осторожностью следует подходить к выводам о количестве топлива, содержащегося в составе чернобыльских лав. В исследованиях 1989 - 1993 гг. особенно ясно проявилась их сложная структура и неоднородность. Поэтому сделанные сейчас оценки все еще достаточно неопределенны (табл.8).

Помещения	Количество	Оценка	Примечание
	топлива по	погрешности	
	урану, т	по урану, т.	
305/2 + "ОР"+ шахта	75	+ 25	Теплометрический метод (Т). В
		1	погрешность включены неопределенности,
			связанные с влиянием тепловых потоков о других помещений на отметке 9.00,
ПРК	05		топлива на "ОР" и выше в шахте реактора
IIPK	25	±11	Т. С учетом топлива в клапанах
ББ-2	8	±3	Визуальный метод (В), метод коллимированных детекторов (КД)
ББ-1	1,5	±0,7	В, КД
304/3,303/3, 301/5,301/6, "слоновья нога" и до	11	±5	В

Таблица 8. Итоговая оценка количества топлива в помещениях 4-го блока ЧАЭС

 Π р и м е ч а н и е. Полное количество топлива (U): наиболее вероятный интервал от 70 до 150 т.

6. СЦЕНАРИЙ ОБРАЗОВАНИЯ ЛТСМ. МАТЕРИАЛЬНЫЙ БАЛАНС

При расчете материального баланса было учтено, что 145 т серпентинита при нагревании выше 500 °С превращаются в 126 т оливин-форстерита и диоксида кремния:

$$Mg_6 (Si_4O_{10}) (OH)_8 \rightarrow 3Mg_2SiO_4 + SiO_2 + 4H_2O.$$

При этом образуется 18.8 т воды, что соответствует 23 тыс.м³ перегретого водяного пара.

Расчет проводился для двух групп элементов. Для первой группы элементов (кальций, калий, натрий, алюминий, железо, хром) известно их содержание в бетоне и серпентините (табл.9), а также концентрация в ЛТСМ (см. табл.2).

Вторая группа элементов (цирконий, марганец, никель, барий, титан) в бетоне и серпентините не содержится. Поэтому их количество рассчитывалось только по результату химического анализа с учетом общей массы ЛТСМ.

Результаты представлены в табл.9 и 10.

Таблица 9. Химический состав ЛТСМ и конструкционных материалов 4-го блока ЧАЭС, мас%

Элемент	Песок	Серпентинит	Строительный	роительный ЛТСМ		
			бетон	эксперимент	расчет	
0	50.0	52.0	47.7	Нет данных	Нет данных	
Si	39.6	20.2	37.4	31.0	31.0	
Mg	-	26.3	до 0.2	3.0	3.0	
Ca	1.2	1.0	4.9	5.2	3.9	
Na	1.8	-	1.8	4.0	1.4	
K	1.3	-	1.4	1.3	1.1	
U	_	-	-	7.0	7.0	
Zr	-	-	-	3.6	2.6	
Fe	1.4	Fe ₂ O ₃ 2.1-6.0	1.12	1.2	1.4	
		FeO 0.16-1.6				
Al	3.7	1.0	3.8	3.8	3.0	
Mn	-	-	Не обнаружен	0.37	0.37	
Cr	-	-	То же	0.19	0.17	
Ni	-	-	То же	0.18	0.18	
Ba	-	-	То же	0.13	0.13	
Ti		-	То же	0.12	0.12	

Таблица 10. Массовый баланс ЛТСМ

Компонент	Масса, т.		
Топливо	88		
Оливин-форстерит	126		
Строительный бетон + песок	964.4		
Цирконий	45		
Марганец	4.6		
Никель	2.3		
Барий	1.7		
Титан	1.6		

Из данных, приведенных в табл.9 и 10, следует, что предлагаемый сценарий образования ЛТСМ внутренне непротиворечив, а баланс почти по всем химическим элементам сводится с точностью не менее 15 %. Отсюда следует, что приводимое значение для количества топлива в подреакторных помещениях (88 т) находит еще одно весомое независимое подтверждение.

7. СЦЕНАРИЙ ОБРАЗОВАНИЯ ЛТСМ. ИСТОЧНИК ТЕПЛА ПРИ ПЛАВЛЕНИИ

Очевидно, что для осуществления обсуждаемого сценария процесса образования ЛТСМ необходим мощный, стабильный в течение длительного времени и находящийся в непосредственном контакте с плавящимися массами источник тепла. Как показывают расчеты, таким источником может быть только само ядерное топливо разрушенного реактора 4-го блока ЧАЭС.

Действительно, в табл.11 (данные из работы [8] приведена мощность тепловыделения топлива (в кВт/т U) на момент разрушения реактора (26 апреля 1986 г.) и в течение 300 ч после аварии. Из таблицы следует, что к моменту взрыва эта величина составляла 295 кВт/т U.

Таблица 11. Мощность тепловыделения топлива реактора 4-го блока ЧАЭС после его разрушения, кВт/т U

Время после аварии,	Мощность тепловыделения								
ч									
	суммарная	летучих	с учетом вылета						
		компонентов	летучих						
			компонентов						
0	295	65.29	229.71						
6	135	21798	113.02						
12	117	18.22	98.78						
18	108	16.14	91.86						
24	102	14.76	87.24						
36	92.7	12.21	80.49						
48	86	10.58	75.32						
60	80.6	9.22	71.38						
72	76.1	8.11	67.99						
84	72.3	7.3	65						
96	69.0	6.39	62.61						
108	66.2	5.95	60.25						
120	63.6	5.27	58.33						
132	61.4	4.89	56.51						
144	59.3	4.42	54.88						
156	57.5	4.05	53.45						
168	55.8	3.68	52.12						
180	54.2	3.42	50.78						
192	52.8	3.15	40.65						
204	51.5	2.90	48.6						
216	50.2	2.64	47.56						
228	49.1	2.39	46.71						
240	48.0	2.25	45.75						
252	47.0	2.10	44.90						
264	46.0	1.85	44.15						
276	45.1	1.74	43.36						
288	44.2	1.61	42.59						
300	43.4	1.48	41.92						
300	43.4	1.40	41.92						

С большой вероятностью можно предположить, что после взрыва в результате воздействия высокой температуры осколки деления - изотопы благородных газов (БГ), йода и брома - полностью или почти полностью вылетели из топлива. В результате остаточное тепловыделение топлива сразу после взрыва можно считать равным около 230 кBT/T U.

По мере распада короткоживущих изотопов мощность тепловыделения снижалась и достигала значений (с учетом вылетевших изотопов БГ, I и Вг), указанных в 4-й графе табл.11.

Для перехода от мощности тепловыделения к количеству тепла, выделившемуся за время после взрыва, необходимо проинтегрировать функцию W = f(t):

$$Q = \int_{0}^{t} W(t)dt, \tag{1}$$

где Q - количество выделившегося за время t тепла; W(t) - мощность тепловыделения.

Поскольку вид подынтегральной функции неизвестен, интегрирование проводили графическим путем. Результаты представлены в табл.12.

Таблица 12. Удельное тепловыделение топлива реактора 4-го блока ЧАЭС через время t (ч) после его разрушения О·10-6, ккал/т U

t	Q	t	Q	t	Q		t	Q		t	Q
6	0.885	60	5.53	120	8.12	1	192	11.45	1	252	13.88
12	1.43	72	5.53	132	8.72		204	11.95		264	14.34
18	1.92	84	6.22	156	9.85		216	12.45		276	14.79
24	2.39	96	6.88	168	10.40		228	12.94		288	15.24
36	3.25	108	7.51	180	10.93		240	13.41		300	15.67
48	4.06					li					

8. СЦЕНАРИЙ ОБРАЗОВАНИЯ ЛТСМ. ВРЕМЯ ПРОТЕКАНИЯ ПРОЦЕССОВ ПЛАВЛЕНИЯ

Как это видно из табл.10, в обсуждаемом сценарии образования ЛТСМ тепло затрачивается на плавление в основном трех компонентов: бетона, лежащего на "OP", самой "OP" и серпентинита засыпки.

Кроме того, при расчетах необходимо было учесть, что при плавлении компонентов смеси происходит потеря тепла за счет теплоотдачи.

При расчетах применялось уравнение (1)

$$Q = m \cdot Cp \cdot (T_2 - T_1) + \Delta H_{\pi\pi} \cdot m, \qquad (2)$$

где Q - количество тепла, необходимого для плавления, ккал; m - масса, кг; Cp - удельная теплоемкость, ккал/кг·град; $\Delta H_{\pi\pi}$ - теплота плавления, ккал/кг; T_2 - температура плавления, °C; T_1 - начальная температура, °C.

Все результаты, полученные при расчете теплового баланса, приведены в табл.13.

 Таблица
 13. Затраты тепла и парциальное время протекания отдельных стадий процесса плавления при образовании ЛТСМ

Компонент	Кол-во, т	Теплофизические константы			Кол-во тепла, необходимое для нагревания	Кол-во тепла, отводимое в результате	Парциаль- ное время процесса	
		T _{пл} , °C	С _р , ккал/ (кг-град)	ΔН _{пл} , ккал/кг	или расплавле- ния, ккал	теплосъема, ккал		
Zr (по химическому анализу, табл.10)	45	1852	0.072	38.23	5.0·1 0⁶	-	23 мин	
UO₂ (по хими- ческому анализу, табл.10)	100	-	0.36	-	3.6·1 0 ⁷	•	2 ч 50 мин	
Металл подпят- ников	60.6	1538	0.11	58.8	1.1·10 ⁷	-	50 мин	
Верхняя крышка схемы "ОР"	12.9	1538	0.11	58.8	2.4·10 ⁸	-	10 мин	
Серпентинит (Mg ₆ SiO ₄ O ₁₀)х х(OH) ₈ до 500 °C	145	-	0.267	-	3.9·10 ⁸	-	18 мин	
Оливин-форстерит Mg_2SiO_4 (из - серпентинита после 500 °C)	110.4	1890	0.202	37.4	3.5·1 0 ⁷	-	2 ч 40 мин	
SiO ₂ (из серпентинита после 500 °C)	15.7	1610	0.176	33.8	3.6⋅10 ⁶	-	17 мин	

H₂O(из серпен- тинита после 500 °C)	18.8 (2.4x x10 ⁴ м ³	-	1	539.83 (ДН _{исп})	1.0·10 ⁷	-	47 мин
Нижняя крышка схемы "ОР" без теплосъема	пара) 12.9	1538	0.11	48.8	2.4·10 ⁶	-	10 мин
Теплосъем с нижней крышки схемы "ОР"	-	-	-	-	-	8.5 10 ⁶	37 мин
Бетон + песок	964.4	1610 (кварц)	0.2	33.8 (кварц)	3.4·10 ⁸	-	45 ч
Всего	-	<u> </u>	-	-	4.6·10 ⁸	-	65 ч

8.1. Расчет времени существования высоких температур по кинетике окисления образцов реакторного графита. При визуальном осмотре помещения 305/2 и отборе проб из этого помещения было установлено, что в некоторых местах на поверхности застывшей лавы (черная керамика) лежат полуобгоревшие графитовые блоки из кладки активной зоны реактора. Очевидно, что, оценив время контакта блока с высокотемпературным расплавом, мы сможем вычислить промежуток времени между началом формирования и застыванием ЛТСМ в данном помещении.

Известно, что реакторный графит при температуре ниже 300 °C с кислородом практически не взаимодействует. По мере повышения температуры вплоть до 850 °C скорость окисления графита линейно возрастает, а затем, до 1800 °C, практически от температуры не зависит [29]. Исходя из этого можно оценить время, в течение которого графитовый образец известной формы (массы) полностью окислится под действием высокой температуры (выше 850 °C).

Была исследована кинетика окисления конкретного образца графита из подреакторного помещения 305/2, отобранного у стены, граничащей с помещения 304/3. Исследования с образцами большей массы проводили на новом графите марки ГМЗ, взятом из упаковок со склада бывшей промбазы 4-го блока ЧАЭС.

Очевидно, что скорость окисления графита пропорциональна его поверхности, которая из-за более сильного нагрева углов и граней будет уменьшаться в процессе окисления. Однако легко показать, что поверхность кубического образца отличается от поверхности шарообразного образца той же массы не более чем на 17 %.

Процесс изменения массы графита при окислении будет описываться уравнением

$$dm / dt = - K \cdot S, \tag{3}$$

где m - масса кубического образца графита; t - время; K - константа; S - поверхность кубического образца массы m.

С учетом того, что $S_{\kappa y6} = 6 \cdot (m_i/\rho)^{2/3}$, где ρ - плотность реакторного графита 1.7 г/см³, уравнение (3) можно переписать следующим образом:

$$dm / dt = - K \cdot 4.21 m^{2/3}$$
. (4)

Интегрирование уравнения (4) дает следующее:

$$m_t = (m_o^{1/3} - 1.4 \text{ Kt}),$$
 (5)

где m_t - масса кубического образца графита после окисления в течение времени t, m_0 - его начальная масса.

Если весь графит окислился, то $m_t = 0$, а время полного окисления

$$t_{no} = 0.713 \cdot 1/K \cdot m_0^{1/3}.$$
(6)

Таким образом, для определения времени полного окисления графитного блока необходимо знать величину K, которая может быть определена либо аналитически, либо графически как тангенс угла наклона кривой в координатах $\Delta m_i/\Delta t_i$ - $S_{\kappa y 6}$, где эквивалентная $S_{\kappa y 6}$ - кубическая поверхность образца массы m_i (см.выше).

Для константы К было получено среднее по нескольким образцам значение

$$K = (2\pm 1) \cdot 10^{-1} \text{ г/см}^2 \cdot \text{ч}.$$

Основным структурным элементом графитовой кладки реактора РБМК является блок, имеющий форму параллелепипеда сечением 250 х 250 мм, высотой 600 мм и массой 60 кг с цилиндрическим отверстием для технологического канала диаметром 114 мм.

С учетом найденного значения K время полного окисления такого блока с эквивалентной кубической поверхностью $S^{\kappa y \delta}$ (см.выше) составит около 6 сут.

Визуально установлено, что в помещении 305/2 обгоревшие остатки графитовых блоков находятся на поверхности застывших ЛТСМ. Поэтому интенсивное окисление графита могло происходить лишь тогда, когда температура этой поверхности была выше 850 °C, а окончательное прекращение процесса произошло после ее снижения до 300 °C.

Как уже указывалось, среднее расчетное время полного окисления одного графитного блока кладки активной зоны реактора РБМК составляет около 6 сут. Однако в помещении 305/2 наблюдаются вполне весомые фрагменты этих блоков - до 1/2 начального размера. Поэтому вполне допустимым кажется ограничение нижнего предела времени процесса плавления - застывания ЛТСМ 3 сут, т.е. не менее 72 ч.

8.2. Температурные условия образования чернобылита [25]. Существенной особенностью фазового состава ЛТСМ является наличие чернобылита, который обнаруживается во всех видах керамики.

Известно [31], что в бинарной системе ZrO_2 -SiO₂ циркон образуется и существует только в твердом состоянии, диссоциируя при температуре выше 1676 °C по реакции

$$ZrSiO_4 \leftrightarrow ZrO_2 + SiO_2$$
.

В разд. 4.2.4 уже указывалось, что ориентировочное время кристаллизации чернобылита составляет 4 - 5 сут, т.е. 96 - 120 ч. Таким образом, после прекращения движения лавы (через 65 + 18 = 83 ч) из-за снижения температуры на ее поверхности до 850 °C в глубине ЛТСМ в течение еще (96 – 120) - 83 = (13 – 37) ч существовала температура не ниже 1600 °C.

9. ОБЩАЯ КАРТИНА ТЕМПЕРАТУРНО-ВРЕМЕННОГО РЕЖИМА ПРОЦЕССА ОБРАЗОВАНИЯ ЛТСМ

Исходя из всего вышеизложенного, можно представить себе картину образования ЛТСМ следующим образом:

1. Момент 0.

Происходит "большой взрыв", события которого длятся несколько секунд.

Активная зона реактора разрушена. Плита основания реактора "вбита" на 4 м вниз с повреждением юго-восточного сектора. Это происходит из-за косонаправленного характера взрыва, который подбрасывает верхнюю крышку реактора в северо-западном направлении и концентрирует на юго-восточной части схемы "ОР" значительную массу топлива.

В момент полета схемы "Е", когда шахта реактора открыта, в нее обрушиваются обломки бетона боковых стен южного и частично северного барабан-сепараторов. Взрыв носит объемный характер, т.е. является бризантным, что способствует дроблению бетона. В проран потолка помещения 305/2 осыпается песок биологической защиты шахты реактора и межкомпенсаторного зазора. Общая масса кремнийсодержащих материалов около 960 т. Локально-точечная мгновенная температура достигает 2600 °C.

Остаточное тепловыделение осколков деления начинает разогревать бетонно-песчаную топливную шихту.

2. ~ 3 ч после взрыва (около 4 ч утра 26.04.86).

В результате остаточного тепловыделения осколков деления и протекающих экзотермических реакций (в частности, горение циркония) выделяется около $4\cdot10^7$ ккал тепла.

Температура внутри твэлов повысилась до температуры плавления циркониевой оболочки (1900 °C). До этой же температуры прогрелся и диоксид урана. Образуется уран-циркониевая эвтектика, т.е. топливо без плавления переходит в жидкое состояние.

3. ~ 4 ч после взрыва (около 5 ч утра 26.04.86).

Выделилось еще около 1.3·10⁷ ккал тепла. Суммарное тепловыделение составляет около 5.4·10⁷ ккал. Расплавлен металл подпятников и верхняя крышка плиты основания реактора схемы "OP" (около 1500 °C). Из уран-циркониевой эвтектики происходит интенсивный переход осколков деления - рутения-103, 106 и сурьмы-125 - в расплавленный металл. Значительная часть бетона под действием высокой температуры рассыпалась до песка. Часть общего количества песка (6-10 %) расплавилась. Начала образовываться тройная система UO₂-ZrO₂-SiO₂, на поверхности которой устанавливается температура около 1700 °C.

Расплав вощел в контакт с серпентинитом.

4. ~ 4 ч 30 мин после взрыва (около 6 ч утра 26.04.86).

Выделилось еще $4\cdot10^6$ ккал тепла. Суммарное тепловыделение составляет около $5.75\cdot10^7$ ккал.

Серпентинит прогредся до 500 °C, начинается его разложение.

Продолжается плавление песка и образование тройной системы UO_2 - ZrO_2 - SiO_2 .

5. ~ 10 ч после взрыва (около 11 ч 26.04.86).

Выделилось еще $4.88\cdot10^7$ ккал тепла. Суммарное тепловыделение составляет $1.06\cdot10^8$ ккал.

Серпентинит полностью разложился, расплавились образовавшиеся оливинфорстерит и SiO₂, выделился перегретый водяной пар (около 24 тыс. м³).

Продолжается плавление песка и образование тройной системы UO_2 - ZrO_2 - SiO_2 .

Расплав вошел в контакт с нижней крышкой плиты основания реактора схемы "ОР".

6. ~ 11 ч после взрыва (около 12 ч 26.04.86).

Выделилось еще 1.04·10⁷ ккал тепла. Суммарное тепловыделение составляет 1.17·10⁸ ккал. Расплавлена нижняя крышка схемы "ОР". Расплав прорывается в

помещение 305/2.

Продолжается плавление песка и образование тройной системы UO₂-ZrO₂-SiO₂. Осколки деления рутений-103,106 и сурьма-125 активно переходят из уранциркониевой эвтектики в расплавленный металл.

Из расплавленного SiO₂ серпентинита, частично расплавленного песка и неокислившегося UO₂ образуется коричневая керамика, которая прорывается через четвертый паросбросный клапан юго-западного сектора. Возникает большой вертикальный поток.

7. ~ 65 ч после взрыва (около 18 ч 28.04.86).

Выделилось еще 3.4·10⁸ ккал. Суммарное тепловыделение - 4.55·10⁸ ккал.

Полное расплавление песка. Через пролом поврежденной стенки между помещением 305/2 и помещением 304/3 лавовый поток со скоростью 4-6 м/ч движется через помещение 304/3, коридоры 301/5, 301/6 и по кабельным проходкам в помещение 217/2, образуя большой горизонтальный поток и "слоновью ногу". Температура поверхности - не менее 850 °C, температура внутри лавы около 1700 °C.

8. ~ 83 ч после взрыва (около 12 ч 29.04.86).

Потоки застывают, температура поверхности около 300 °C, температура внутри лавы 1600 - 1700 °C. Кристаллизуется чернобылит, металлические глобулы - в жидком состоянии.

9. ~ 96 - 120 ч после взрыва (около 12 ч 30.04.86).

Температура внутри лавы ниже $1400~^{\circ}$ С, температура поверхности лавы $\leq 800~^{\circ}$ С. Металлические глобулы застывают внутри силикатной матрицы и чернобылита.

Таким образом, пространственное формирование лавовых потоков закончилось к середине дня 30.04.86 г.

10. ЗАКЛЮЧЕНИЕ

- 1. Путем визуальных наблюдений установлено, что топливо разрушенного в результате аварии 4-го энергоблока ЧАЭС находится внутри объекта "Укрытие" в виде трех модификаций: АЗФ, "горячих" частиц (пыли) и ЛТСМ.
- 2. Установлено, что ЛТСМ растеклись по подреакторным помещениям 4-го блока и образовали три основных потока, в которых содержится значительная доля исходного количества топлива.
- 3. В соответствии с потоками проведена классификация ЛТСМ по основным признакам и установлено, что их можно разделить на пять основных видов.
- 4. Изучены физико-химические свойства ЛТСМ на макроуровне, приведены данные по элементному составу, плотности и содержанию в них топлива. Показано, что выгорание во всех типах ЛТСМ одинаково (12.6 мВт ·сут/кг урана), концентрация урана в коричневой керамике в среднем в два раза больше, чем в черной (~ 10 и 5 %), и во всех типах ЛТСМ как следствие воздействия высокой температуры наблюдается обеднение по цезию (2,5 раза) и рутению (25 раз).
- 5. Изучены физико-химические свойства ЛТСМ на микроуровне и показано, что они являются гетерогенными твердыми растворами, "растворителем" в которых служит силикатная стеклообразная матрица, состав которой приводится. Гетерогенными включениями в эту матрицу являются стехиометрические оксиды урана с изоморфными включениями циркония и без них, самостоятельная уранцирконо-кислородная фаза UZr_7 O_{16} и чернобылит высокоурановый силикат циркония техногенного происхождения.
 - 6. С хорошей сходимостью двумя независимыми методами по выброшенно-

му при горении реактора цезию-137 и по содержащемуся в ЛТСМ магнию - оценено количество топлива в подреакторных помещениях: около 90 т по урану. Эта цифра хорошо совпадает с оценкой, полученной ранее с использованием теплометрических методов.

- 7. Предложен сценарий образования ЛТСМ. На основании этого сценария рассчитан материальный баланс ЛТСМ, совпадающий с точностью до 20 % с результатами химического анализа. Объяснены имеющиеся немногочисленные отклонения.
- 8. Для предложенного сценария образования ЛТСМ определен источник тепла при образовании лав энергия осколков деления ядерного топлива разрушенного реактора. Рассчитано интегральное тепловыделение этого топлива, количество тепла и время, необходимое для протекания каждой стадии предлагаемого сценария.
- 9. Описана каждая стадия образования ЛТСМ и показано, что процесс "варки" лавы длился около 65 ч, процесс растекания расплава в горизонтальном направлении еще около 18 ч, а температура внутри лавового потока после потери им подвижности в течение 13 37 ч сохранялась на уровне 1600 °C.

СПИСОК ЛИТЕРАТУРЫ

- 1. Техническое обоснование ядерной безопасности объекта "Укрытие" / Под ред. С.Т.Беляева, А.А.Борового, К.Г.Волкова и др -. М.: Чернобыльская КЭ при ИАЭ им.И.В.Курчатова, 1990. 160 с.
- 2. Боровой А.А., Галкин Б.Я., Криницын А.П. и др. // Радиохимия. 1990. Т. 32, № 6. С. 103-113.
- 3. Боровой А.А., Галкин Б.Я., Драпчинский Л.В. и др. // Радиохимия. 1991. Т. 33, № 4. С. 177-196.
- 4. Савоненков В.Г., Кривохатский А.С., Дубасов Ю.В. и др. // Радиохимия. 1991. Т. 33, № 4. С. 140-149.
- 5. Бураков Б.Е., Пазухин Э.М., Николаева Л.Д. и др. Исследование взаимодействия топлива с конструкционными материалами в объекте "Укрытие": (Заключительный отчет) / МНТЦ "Укрытие" АН Украины, инв. № 11-07/16 от 22.12.89.
- 6. Андерсон Е.Б., Бураков Б.Е., Пазухин Э.М. и др. Исследование взаимодействия топлива с конструкционными материалами в объекте "Укрытие": (Заключительный отчет) / МНТЦ "Укрытие" АН Украины, инв.№11-07/285 от 13.12.91.
- 7. Александрук В.М., Пазухин Э.М., Прусаков В.В. и др. Исследование ТСМ объекта "Укрытие" с целью определения в них микропримесей, являющихся нейтронными поглотителями: (Отчет-справка) / МНТЦ "Укрытие" АН Украины, инв.№ 09/35 от 21.12.92.
- 8. Боровой А.А., Довбенко А.А., Маркушев В.М., Строганов А.А. Радиационно-физические характеристики топлива 4-го энергоблока ЧАЭС и оценка их погрешности: Справочник / КЭ им.И.В.Курчатова, 11.07-06/172. Чернобыль, 1989.
- 9. Chohen I., Schaner B. // J.Nucl. Mater. 1963. P.9133.
- 10. Kanno Y. // J.Mater Sci. 1989. Vol. 24. P.2415-2420.
- 11. Торопов Н.А. Диаграммы состояния силикатных систем: Справочник. Вып. 2. Л.: Наука, 1970.
- 12. Гринченко Г.П., Огородник С.С., Попов В.Д. и др. // Вопр. атом. науки. Сер. ядерно-физ.исслед. 1990. Вып.11(19). С. 32-35.

- 13. Результаты радиационных и тепловых измерений, выполненных на объекте "Укрытие" в 1989 г.: (Промежуточный отчет) / КЭ при ИАЭ им.И.В.Курчатова, № 11.07-06/189. Чернобыль, 1989.
- 14. Боровой А.А., Огородник С.С., Попов В.Д. и др. Уточнение оценки количества ядерного топлива, находящегося в помещении ПРК объекта "Укрытие" реактора 4-го блока ЧАЭС: (Промежуточный отчет) / КЭ при ИАЭ им.И.В.Курчатова, инв.№ 11-07-06/188. Чернобыль, 1989.
- 15. Боровой А.А., Огородник С.С., Попов В.Д. и др. Оценка количества топлива в скоплениях ТСМ в подаппаратном помещении: (Промежуточный отчет) / КЭ при ИАЭ им.И.В.Курчатова, № 11.07/26. Чернобыль, 1990.
- 16. Боровой А.А. Римский-Корсаков А.А., Петров Б.Ф. и др. Разработка аппаратуры и методов на основе коллимированных гамма-детекторов и оценка количества топлива в бассейне 4-го блока ЧАЭС: (Отчет) / РИ им.В.Г.Хлопина, КЭ при ИАЭ им.И.В.Курчатова, инв. № 1334 И, 1990. 107 с.
- 17. Киселев А.Н., Ненаглядов А.Ю., Сурин А.И. и др. Экспериментальные исследования лавообразных топливосодержащих масс (ТСМ) на 4-м блоке ЧАЭС // Препринт 5533/3. М., 1992. 120 с.
- 18. UNSCEAR. Sources, Effects and Risks of Ionizing Radiation // Report to the General Assembly. New York, 1988. 42 p.
- 19. Ilin L.A. // J. Radiob. Protection. 1990. Vol. 10, N 1. P. 11-12.
- 20. Доллежаль Н.А., Емельянов И.Я. Канальный ядерный реактор. М.: Атомиздат, 1980.
- 21. Физические величины: Справочник / Под ред. И.С. Григорьева, Е.З. Мейлихова. М.: Энергоатомиздат, 1991.
- 22. Михеев М.А. Основы теплопередачи. М.: Госэнергоиздат, 1956.
- 23. Отчет-справка ОЯРБ МНТЦ "Укрытие", инв. № 09-05/213 от 21.09.93. Чернобыль, 1993.
- 24. Вол А.Е. Строение и свойства двойных металлических систем. Т. 2. М.: Изд-во физ.-мат. лит., 1962.
- 25. Borovoy A.A., Denissenko E.T., Anderson E.B. et al. // Mat. Tech'91, The Second European East-West Symposium on Materials and Processes (May 26-30, 1991): Abstracts. 1991. P. 362.
- 26. Котельников Р.В., Башлыков С.Н. и др. Высокотемпературное ядерное топливо. М.: Атомиздат, 1978.
- 27. Емельянов И.С. Металлургия ядерного горючего. М.: Атомиздат, 1968.
- 28. J. Nucl. Mater. 1970. Vol. 36, N 2. P. 116.
- 29. Гончаров В.В., Бурдаков Н.С. и др. Действие облучения на графит ядерных реакторов. М.: Атомиздат, 1978.
- 30. Константинов Е.А., Кораблев Н.А. и др. // Атом.энергия. 1989.- Т. 66, № 1. С. 57-58.
- 31. Butterman W., Faster W. // Amer. Mineral. 1967. N 52. P. 880.
- 32. Pena P., De Aza S. // J. Vater. Sci. 1984. Vol. 19. P. 135-149.